Constant Approximation for Capacitated k-Median with $(1+\epsilon)$ -capacity Violation

Gökalp Demirci University of Chicago Shi Li University at Buffalo Input: • Set of clients **C**, •

- Set of clients **C**, ●
- Set of facilities *F*, •

- Set of clients C, •
- Set of facilities *F*, •
- Metric d on *F*∪ *C*,
- Integer k.

- Set of clients C, •
- Set of facilities *F*, •
- Metric d on $F \cup C$,
- Integer k.

Output:

• Open facilities F'⊆**F** ■

- Set of clients **C**, •
- Set of facilities *F*,
- Metric d on $F \cup C$,
- Integer k.

Output:

- Open facilities F'⊆**F** ■
- Connect σ: C→F'

- Set of clients C, •
- Set of facilities *F*,
- Metric d on $F \cup C$,
- Integer k.

Output:

- Open facilities F'⊆F
- Connect σ: C→F'

Constraint:

• $|F'| \le k$, (cardinality cons.)

- Set of clients **C**, ●
- Set of facilities *F*,
- Metric d on *F* ∪ *C*,
- Integer k.

Objective: Min total connection distance

$$\sum_{j\in \boldsymbol{C}} d(\sigma(j),\,j)$$

Output:

Open facilities F'⊆F

Connect σ: C→F'

Constraint:

• $|F'| \le k$, (cardinality cons.)

Capacitated k-Median

Input:

- Set of clients **C**, ●
- Set of facilities *F*,
- Metric d on *F* ∪ *C*,
- Integer k.

Objective: Min total connection distance

$$\textstyle\sum_{j\in\boldsymbol{C}}d(\sigma(j),\,j)$$

Output:

- Open facilities F'⊆F
- Connect $\sigma: C \rightarrow F'$

Constraint:

• $|F'| \le k$, (cardinality cons.)

- Set of clients C, •
- Set of facilities F, capacities u_i ∀ i∈F_□
- Metric d on *F* ∪ *C*,
- Integer k.

Output:

Constraint:

- Open facilities F'⊆F
- Connect σ: C→F'
- $|F'| \le k$, (cardinality cons.)

Objective: Min total connection distance

$$\sum_{i\in \boldsymbol{C}}d(\boldsymbol{\sigma}(j),\,j)$$

- Set of clients C,
- Set of facilities F, capacities u, ∀i∈F□
- Metric d on *F* ∪ *C*,
- Integer k.

Output:

Constraint:

- Open facilities F'⊆F
- Connect σ: C→F'
- $|F'| \le k$ (cardinality cons.)
- $|\sigma^{-1}(i)| \le u_i$ (capacity cons.)

Objective: Min total connection distance

$$\sum\nolimits_{j\in \boldsymbol{C}}d(\boldsymbol{\sigma}(j),\,j)$$

Basic Linear Program

 $y_i=1$: facility $i \in F$ is open $x_{i,j}=1$: client $j \in C$ is connected to facility $i \in F$

Basic Linear Program

y_i=1 : facility i∈**F** is open

 $X_{i,j} = 1$: client $j \in C$ is connected to facility $i \in F$

Idea: Isolated groups!

Idea: Isolated groups!

Integral solution: Costly

Idea: Isolated groups!

Integral solution: Costly

Basic LP fractional solution:

No Cost!

Idea: Isolated groups!

Basic LP fractional solution:

No Cost!

Basic LP has unbounded integrality gap!

Basic LP has unbounded integrality gap! (unless a constraint is violated)

Solution: Pseudo-Approximation

Basic LP has unbounded integrality gap! (unless a constraint is violated)

Solution: Pseudo-Approximation

Violate cardinality constraint by a factor α (open $\alpha \mathbf{k}$ facilities)

Basic LP has unbounded integrality gap! (unless a constraint is violated)

Violate cardinality constraint by a factor α (open α **k** facilities)

Violate capacity constraint by a factor α (connect α **u** clients)

(connect α **u** clients)

Status of Capacitated k-Median

Basic LP has unbounded integrality gap! (unless a constraint is violated)

For Basic LP, α must be ≥ 2

(open α **k** facilities)

Pseudo approximations with <u>cardinality</u> (**k**) violation:

Cardinality violation factor	Approx Factor		Technique
12+17/ <i>ϵ</i>	1+ <i>ϵ</i>	[KPR'98]	Local Search
5+ <i>e</i>	$O(1/\epsilon^3)$	[KPR'98]	Local Search
2	7+ <i>ϵ</i>	[GL'13]	Basic LP

Pseudo approximations with <u>cardinality</u> (**k**) violation:

Cardinality violation factor	Approx Factor		Technique	
12+17/ <i>ϵ</i>	1+ <i>e</i>	[KPR'98]	Local Search	
5+ <i>e</i>	$O(1/\epsilon^3)$	[KPR'98]	Local Search	Limit of Basic L
2	7+ <i>ϵ</i>	[GL'13]	Basic LP	1

Pseudo approximations with <u>cardinality</u> (**k**) violation:

Cardinality violation factor	Approx Factor		Technique	
12+17/ <i>ϵ</i>	1+ <i>e</i>	[KPR'98]	Local Search	
5+ <i>e</i>	$O(1/\epsilon^3)$	[KPR'98]	Local Search	Limit of Basic LP
2	7+ <i>ϵ</i>	[GL'13]	Basic LP	
1+ <i>e</i>	$O(1/\epsilon^2 \log 1/\epsilon)$	[Li'15]	Configuration LP	

Pseudo approximations with capacity (u) violation:

Capacity violation factor	Approx Factor	Technique

Pseudo approximations with <u>capacity</u> (<u>u</u>) violation: (Harder! : satisfying <u>global</u> cardinality -k- constraint)

Capacity violation factor	Approx Factor	Technique

Pseudo approximations with <u>capacity</u> (<u>u</u>) violation: (Harder! : satisfying <u>global</u> cardinality -k- constraint)

Capacity violation factor	Approx Factor		Technique
40	50	[CR'05]	+Dual fitting
3+ <i>ϵ</i>	$O(1/\epsilon^2)$	[BFRS'15]	Basic LP
2+ <i>e</i>	$O(1/\epsilon)$	[L'15]	Basic LP

Pseudo approximations with <u>capacity</u> (<u>u</u>) violation: (Harder! : satisfying <u>global</u> cardinality -k- constraint)

Capacity violation factor	Approx Factor		Technique
40	50	[CR'05]	+Dual fitting
3+ <i>ϵ</i>	$O(1/\epsilon^2)$	[BFRS'15]	Basic LP
2+ <i>e</i>	$O(1/\epsilon)$	[L'15]	Basic LP
1+ <i>ϵ</i>	$O(1/\epsilon^5)$		Configuration LP

Our Result:

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-Phase Clustering
 - Obtaining Local Solutions
 - Putting it all together

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-Phase Clustering
 - Obtaining Local Solutions
 - Putting it all together

Idea: Isolated group **B**⊆*F*

Idea: Isolated group **B**⊆*F*

Basic LP opens $y_B = \sum_{i \in B} y_i$ fractional facilities

Idea: Isolated group **B**⊆*F*

Basic LP opens $y_B = \sum_{i \in B} y_i$ fractional facilities

We can open $\lceil y_R \rceil$ integral facilities?

Configuration LP - intuition

Idea: Isolated group **B**⊆*F*

Basic LP opens $y_B = \sum_{i \in B} y_i$ fractional facilities

We can open $\lceil y_B \rceil$ integral facilities?

Violation factor $\lceil y_B \rceil / y_B$ may be large when y_B is small

Configuration LP - intuition

Idea: Isolated group **B**⊆*F*

Basic LP opens $y_B = \sum_{i \in B} y_i$ fractional facilities

We can open $\lceil y_B \rceil$ integral facilities?

Violation factor $\lceil y_B \rceil / y_B$ may be large when y_B is small

Goal: get "integral" solutions for B if y_B small

 $\forall \mathbf{B} \subseteq \mathbf{F}$, introduce variables $\mathbf{z}_{\perp}^{\mathbf{B}}$ and $\{\mathbf{z}_{S}^{\mathbf{B}}\}$

• z_{\perp}^{B} : "total number of open facilities in **B** is big (> 1/ ϵ)"

 $\forall \mathbf{B} \subseteq \mathbf{F}$, introduce variables \mathbf{z}_{\perp}^{B} and $\{\mathbf{z}_{S}^{B}\}$

- z_{\perp}^{B} : "total number of open facilities in **B** is big (> $1/\epsilon$)"
- o/w a "distribution" over small ($\leq 1/\epsilon$) integral sets
 - \forall small subsets $S \subseteq B$
 - z_S^B : "S is exactly the set of open facilities in **B**"

 $\forall \mathbf{B} \subseteq \mathbf{F}$, introduce variables \mathbf{z}_{\perp}^{B} and $\{\mathbf{z}_{S}^{B}\}$

- z_{\perp}^{B} : "total number of open facilities in **B** is big (> $1/\epsilon$)"
- o/w a "distribution" over small ($\leq 1/\epsilon$) integral sets

 \forall small subsets $S \subseteq B$

• z_S^B : "S is exactly the set of open facilities in **B**"

•
$$z_{\perp}{}^{B} + \sum_{S} z_{S}{}^{B} = 1$$

- $\forall \mathbf{B} \subseteq \mathbf{F}$, introduce variables \mathbf{z}_{\perp}^{B} and $\{\mathbf{z}_{S}^{B}\}$
 - z_{\perp}^{B} : "total number of open facilities in **B** is big (> $1/\epsilon$)"
 - o/w a "distribution" over small ($\leq 1/\epsilon$) integral sets
 - \forall small subsets $S \subseteq B$
 - z_S^B : "S is exactly the set of open facilities in **B**"
 - $z_{\perp}^{B} + \sum_{S} z_{S}^{B} = 1$

LP is large. We don't know how to solve directly

 $\forall \mathbf{B} \subseteq \mathbf{F}$, introduce variables \mathbf{z}_{\perp}^{B} and $\{\mathbf{z}_{S}^{B}\}$

- z_{\perp}^{B} : "total number of open facilities in **B** is big (> $1/\epsilon$)"
- o/w a "distribution" over small ($\leq 1/\epsilon$) integral sets

 \forall small subsets $S \subseteq B$

- z_S^B : "S is exactly the set of open facilities in **B**"
- $z_{\perp}^{B} + \sum_{S} z_{S}^{B} = 1$

LP is large. We don't know how to solve directly

Our algorithm either rounds or finds a violated constraint for ellipsoid alg.!

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-phase Clustering
 - Obtaining Local Solutions
 - Putting it all together

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-phase Clustering
 - Obtaining Local Solutions
 - Putting it all together

• Bundle closeby facilities around chosen representative clients

- Bundle closeby facilities around chosen representative clients
- Total fractional opening in a bundle is not too small ∑ y_i ≥ ½

representatives

black components

- Bundle closeby facilities around chosen representative clients
- Total fractional opening in a bundle is not too small ∑ y_i ≥ ½
- A black component has small total fractional opening $\sum y_i \le 1/(2\epsilon)$

representatives

black components

- Bundle closeby facilities around chosen representative clients
- Total fractional opening in a bundle is not too small ∑ y_i ≥ ½
- A black component has small total fractional opening $\sum y_i \le 1/(2\epsilon)$
- Distances within and between black components are "small"

representatives

black components

- Bundle closeby facilities around chosen representative clients
- Total fractional opening in a bundle is not too small ∑ y_i ≥ ½
- A black component has small total fractional opening $\sum y_i \le 1/(2\epsilon)$
- Distances within and between black components are "small"
- A group has large total opening $\sum y_i \ge 1/\epsilon$

representatives

- Bundle closeby facilities around chosen representative clients
- Total fractional opening in a bundle is not too small $\sum y_i \ge \frac{1}{2}$
- A black component has small total fractional opening $\sum y_i \le 1/(2\epsilon)$
- Distances within and between black components are "small"
- A group has large total opening $\sum y_i \ge 1/\epsilon$
- Number of children groups of a group is small $\leq 1/\epsilon$

representatives

- Bundle closeby facilities around chosen representative clients
- Total fractional opening in a bundle is not too small ∑ y_i ≥ ½
- A black component has small total fractional opening $\sum y_i \le 1/(2\epsilon)$
- Distances within and between black components are "small"
- A group has large total opening $\sum y_i \ge 1/\epsilon$
- Number of children groups of a group is small $\leq 1/\epsilon$
- Distance from a group is to its parent is "small"

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-phase Clustering
 - Obtaining Local Solutions
 - Defining Concentrated (isolated) Components
 - Distributions over Local Solutions for Concentrated Components
 - Putting it all together

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-phase Clustering
 - Obtaining Local Solutions
 - Defining Concentrated (isolated) Components
 - Distributions over Local Solutions for Concentrated Components
 - Putting it all together

Extreme case:

A client is either fully connected to a black comp. J

e.g.
$$x_{J,j} = 1$$

or fully connected to components other than J e.g. $x_{J,i} = 0$

Extreme case:

• A client is either fully connected to a black comp. J

e.g.
$$x_{J,j} = 1$$

or fully connected to components other than J e.g. $x_{J,i} = 0$

More smooth:

• Define $\pi_J := \sum_{i \in C} (1-x_{J,i})x_{J,i}$ for a black comp. J

• Define $\pi_J := \sum_{j \in C} (1-x_{J,j})x_{J,j}$ for a black comp. J

- We can easily carry π_J amount of demand out of J
- If π_{\perp} small $\leq \epsilon^3 x_{\perp C}$ Concentrated

• Define $\pi_J := \sum_{j \in C} (1-x_{J,j})x_{J,j}$ for a black comp. J

- We can easily carry π_J amount of demand out of J
- If π_{J} small $\leq \epsilon^{3} x_{JC}$ Concentrated

• If π_J big $> \epsilon^3 x_{J,C}$ Non-Concentrated

• Define $\pi_J := \sum_{j \in C} (1-x_{J,j})x_{J,j}$ for a black comp. J

- We can easily carry π_J amount of demand out of J
- If π_{J} small $\leq \epsilon^{3} x_{JC}$ Concentrated

• If π_{J} big $> \epsilon^{3} x_{JC}$ Non-Concentrated

• Life is easy with Non-Concentrated Components

• Define $\pi_J := \sum_{j \in C} (1-x_{J,j})x_{J,j}$ for a black comp. J

- We can easily carry π_J amount of demand out of J
- If π_{J} small $\leq \epsilon^{3} x_{JC}$ Concentrated

• If π_J big $> \epsilon^3 x_{J,C}$ Non-Concentrated

Life is easy with Non-Concentrated Components

• Define $\pi_J := \sum_{j \in C} (1-x_{J,j})x_{J,j}$ for a black comp. J

- We can easily carry π_J amount of demand out of J
- If π_J small $\leq \epsilon^3 x_{JC}$ Concentrated

• If π_J big $> \epsilon^3 x_{J,C}$ Non-Concentrated

- Life is easy with Non-Concentrated Components:
 - We can carry **all demand** out with $1/\epsilon^3$ Cost_{LP}

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-phase Clustering
 - Obtaining Local Solutions
 - Defining Concentrated (isolated) Components
 - Distributions over Local Solutions for Concentrated Components
 - Putting it all together

Basic LP solution is NOT sufficient (gap example)

- Basic LP solution is NOT sufficient (gap example)
- For each concentrated component J,
 - If Configuration LP constraints are NOT satisfied for J, return a constraint not satisfied to ellipsoid algorithm

- Basic LP solution is NOT sufficient (gap example)
- For each concentrated component J,
 - If Configuration LP constraints are NOT satisfied for J, return a constraint not satisfied to ellipsoid algorithm
 - o/w use z_s's for each small S⊆J get a "raw" distribution over solutions

$$z_{1} + \sum_{S} z_{S} = 1$$

• We'll extract a distribution over "nice" integral solutions from $\{z_S\}$, $\{z_{S,i}\}$, $\{z_{S,i,j}\}$ (raw distribution: expected number of open facilities y_B , expected amount of demand served $x_{B,C}$)

- We'll extract a distribution over "nice" integral solutions from $\{z_S\}$, $\{z_{S,i}\}$, $\{z_{S,i,j}\}$ (raw distribution: expected number of open facilities y_B , expected amount of demand served $x_{B,C}$)
- "nice" will initially mean:
 - open facilities $\leq y_B / (1-\epsilon)$ and
 - total demand served $\geq x_{B,C} (1-\epsilon)$

- We'll extract a distribution over "nice" integral solutions from $\{z_S\}$, $\{z_{S,i}\}$, $\{z_{S,i,j}\}$ (raw distribution: expected number of open facilities y_B , expected amount of demand served $x_{B,C}$)
- "nice" will initially mean:
 - open facilities $\leq y_B / (1-\epsilon)$ and
 - total demand served $\geq x_{B,C} (1-\epsilon)$

• Show: Total mass of "nice" solutions in the initial distribution is not too small!

• We'll extract a distribution over "nice" integral solutions from $\{z_S\}$, $\{z_{S,i}\}$, $\{z_{S,i,j}\}$ (raw distribution: expected number of open facilities y_B , expected amount of demand served $x_{B,C}$)

"nice" will initially mean:

open facilities

 $\leq y_B / (1-\epsilon)$ and is y

Markov ineq. / Expectation

is $y_B \qquad \sum_{Z_{S,i}} = y_B$

total demand served

$$\geq X_{B,C} (1-\epsilon)$$

Show: Total mass of "nice" solutions in the initial distribution is not too small!

• We'll extract a distribution over "nice" integral solutions from $\{z_S\}$, $\{z_{S,i}\}$, $\{z_{S,i,j}\}$ (raw distribution: expected number of open facilities y_B , expected amount of demand served $x_{B,C}$)

"nice" will initially mean:

open facilities

Markov ineq. / Expectation is
$$y_B = \sum_{S,i} = y_B$$

total demand served

$$\geq X_{B,C}(1-\epsilon)$$

Idea: Use that this is a concentrated component!

Show: Total mass of "nice" solutions in the initial distribution is not too small!

- We'll extract a distribution over "nice" integral solutions from $\{z_S\}$, $\{z_{S,i}\}$, $\{z_{S,i,j}\}$ (raw distribution: expected number of open facilities y_B , expected amount of demand served $x_{B,C}$)
- "nice" will initially mean:
 - open facilities

$$\leq y_B / (1 - \epsilon)$$
 and

total demand served

$$\geq X_{B,C} (1/\epsilon)$$

first $O(\epsilon)$ capacity blow up

- "nice" will finally mean:
 - A distribution over integral sets S, s.t. $|S| \in \{Ly_B \rfloor, \lceil y_B \rceil, \lceil y_B \rceil + 1\}$
 - Capacity blow up $O(\epsilon)$
 - each solution serves all the demand locally

How to round (sample from) these nice distributions?:

How to round (sample from) these nice distributions?:

Independently for each component?

• Too many open facilities

How to round (sample from) these nice distributions?:

Independently for each component?

Too many open facilities

Dependently for all concentrated components in sibling groups together!

• O(1) total extra open facilities

- Configuration LP
- Rounding algorithm for $(1+\epsilon)$ capacity violation
 - 3-phase Clustering
 - Obtaining Local Solutions
 - Defining Concentrated (isolated) Components
 - Distributions over Local Solutions for Concentrated Components
 - Putting it all together

Putting it all together

For each group G,

• We may be opening O(1) extra facilities in all the children of a group

Putting it all together

For each group G,

• We may be opening O(1) extra facilities in all the children of a group

• Shut down O(1) facilities in G or in children.

together (V)

Putting it all together

For each group G,

• We may be opening O(1) extra facilities in all the children of a group

• Shut down O(1) facilities in G or in children.

 Serve their demand with capacity blow-up

A group has $\Omega(1/\epsilon)$ open facilities

Further research

• This finishes pseudo approximations for capacitated k-median.

• A true constant-factor approximation for capacitated k-median? (no violation)

Configuration LP has big integrality gap!